skaiuijing

前言

笔者之前已经介绍过了Sparrow信号量的源码,但是对于信号量的使用,并没有讲得非常详细,仅仅讲了同步与互斥的概念。

本章让笔者介绍如何使用Sparrow的信号量,深入探讨一下信号量在同步、计数与互斥中的应用。

使用信号量解决资源问题

生产者,消费者是一种经典模型,一边是供给,一边是需求。在计算机历史上,有许多这种问题,例如哲学家进餐问题,有兴趣的读者可以自行研究。

本篇文章中,我们主要解决以下问题:

单生产者,单消费者

多生产者,单消费者

多生产者,多消费者

多读者,多写者

单生产者,单消费者

我们通过创建环形缓冲区(一种特殊的队列)来建立生产者和消费者模型,一个插入消息,另一个获取消息。

观察结构体,有两个信号量,一个初始化时用于同步,一个用于计数。

只要分配合理的优先级,信号量可以用于互斥,与互斥锁相比,它的优点在于没有所有者的概念,完全可以让两个不同的线程形成原子操作。

看看具体的代码:

Oo_insert函数是生产者:先使用计数信号量获取是否有空间,然后插入数据,然后释放信号通知消费者。

Oo_remove函数是消费者:先获取是否有数据,再取出数据,然后恢复计数。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

#define BufferSIZE 5
Class(Oo_buffer)
{
int buf[BufferSIZE];
int in;
int out;
Semaphore_Handle item;
Semaphore_Handle space;
};



Oo_buffer_handle Oo_buffer_creat(void)
{
Oo_buffer_handle Oo_buffer1 = heap_malloc(sizeof (Oo_buffer));
*Oo_buffer1 = (Oo_buffer){
.buf = {0,0,0,0,0},
.in = 0,
.out = 0,
.item = semaphore_creat(0),
.space = semaphore_creat(BufferSIZE)
};
return Oo_buffer1;
}

void Oo_insert(Oo_buffer_handle Oo_buffer1, int object)
{
semaphore_take(Oo_buffer1->space, 1);
Oo_buffer1->buf[Oo_buffer1->in] = object;
Oo_buffer1->in = (Oo_buffer1->in + 1) % BufferSIZE;
semaphore_release(Oo_buffer1->item);
}

int Oo_remove(Oo_buffer_handle Oo_buffer1)
{
semaphore_take(Oo_buffer1->item, 1);
int item1 = Oo_buffer1->buf[Oo_buffer1->out];
Oo_buffer1->out = (Oo_buffer1->out + 1) % BufferSIZE;
semaphore_release(Oo_buffer1->space);
return item1;
}

多生产者,单消费者

多生产者时,与单生产者相比只有一个地方需要注意,那就是对环形缓冲区本身的访问,如果仍然使用单生产者的模型,多个生产者可以同时获取计数信号量,但是它们的下标操作会导致竞态的发生。

所以我们额外需要一个信号量,用于保证生产者们互斥访问环形缓冲区。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Class(Mo_buffer)
{
int buf[BufferSIZE];
int in;
int out;
Semaphore_Handle item;
Semaphore_Handle space;
Semaphore_Handle guard;
};



Mo_buffer_handle Mo_buffer_creat(void)
{
Mo_buffer_handle Mo_buffer1 = heap_malloc(sizeof (Mo_buffer));
*Mo_buffer1 = (Mo_buffer){
.buf = {0,0,0,0,0},
.in = 0,
.out = 0,
.item = semaphore_creat(0),
.space = semaphore_creat(BufferSIZE),
.guard = semaphore_creat(1)
};
return Mo_buffer1;
}

void Mo_insert(Mo_buffer_handle Mo_buffer1, int object)
{
semaphore_take(Mo_buffer1->space, 1);

semaphore_take(Mo_buffer1->guard, 1),
Mo_buffer1->buf[Mo_buffer1->in] = object;
Mo_buffer1->in = (Mo_buffer1->in + 1) % BufferSIZE;
semaphore_release(Mo_buffer1->guard);

semaphore_release(Mo_buffer1->item);
}

int Mo_remove(Mo_buffer_handle Mo_buffer1)
{
semaphore_take(Mo_buffer1->item, 1);
int item1 = Mo_buffer1->buf[Mo_buffer1->out];
Mo_buffer1->out = (Mo_buffer1->out + 1) % BufferSIZE;
semaphore_release(Mo_buffer1->space);
return item1;
}


多生产者,多消费者

多消费者同理,我们额外需要一个信号量,用于保证消费者们互斥访问环形缓冲区。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Class(Mm_buffer)
{
int buf[BufferSIZE];
int in;
int out;
Semaphore_Handle item;
Semaphore_Handle space;
Semaphore_Handle guard;
};



Mm_buffer_handle Mm_buffer_creat(void)
{
Mm_buffer_handle Mm_buffer1 = heap_malloc(sizeof (Mm_buffer));
*Mm_buffer1 = (Mm_buffer){
.buf = {0,0,0,0,0},
.in = 0,
.out = 0,
.item = semaphore_creat(0),
.space = semaphore_creat(BufferSIZE),
.guard = semaphore_creat(1),
};
return Mm_buffer1;
}

void Mm_insert(Mm_buffer_handle Mm_buffer1, int object)
{
semaphore_take(Mm_buffer1->space, 1);

semaphore_take(Mm_buffer1->guard, 1),
Mm_buffer1->buf[Mm_buffer1->in] = object;
Mm_buffer1->in = (Mm_buffer1->in + 1) % BufferSIZE;
semaphore_release(Mm_buffer1->guard);

semaphore_release(Mm_buffer1->item);
}

int Mm_remove(Mm_buffer_handle Mm_buffer1)
{
semaphore_take(Mm_buffer1->item, 1);

semaphore_take(Mm_buffer1->guard, 1);
int item1 = Mm_buffer1->buf[Mm_buffer1->out];
Mm_buffer1->out = (Mm_buffer1->out + 1) % BufferSIZE;
semaphore_release(Mm_buffer1->guard);

semaphore_release(Mm_buffer1->space);
return item1;
}

多读者,多写者

多读多写问题稍微复杂一些,我们需要两个互斥信号量,两个同步信号量,两个读者计数值,两个写者计数值。

顺便一提,笔者这里讲的互斥信号量不是互斥锁。Sparrow中互斥信号量是初始化时value为1的信号量,它的优点在于没有所有者的概念。

读模型:

申请读:先声明为读者,获取互斥信号量保证对计数值的互斥,如果没有活跃的写者,那么获取访问权限,否则等待读取信号量。

读完释放:减少计数值,如果没有正在读的读者,但是存在等待的写者,那么唤醒它们。

写模型:

申请写:先声明为写者,如果没有正在读的读者,那么成为写者,然后获取互斥信号量保证申请写以及写完释放操作的原子性

写完释放:获取互斥信号量,减少计数,如果没有其他活跃者,但是存在等待的读者,那么增加正在读的读者的计数,然后唤醒这些读者。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

Class(MrMw_control)
{
Semaphore_Handle read;
Semaphore_Handle write;
Semaphore_Handle W_guard;
Semaphore_Handle C_guard;
int active_reader;
int reading_reader;
int active_writer;
int writing_writer;
};

MrMw_control_handle MrOw_creat(void)
{
MrMw_control_handle MrMw_control1 = heap_malloc(sizeof (MrMw_control));
*MrMw_control1 = (MrMw_control){
.read = semaphore_creat(0),
.write = semaphore_creat(0),
.W_guard = semaphore_creat(1),
.C_guard = semaphore_creat(1),
.active_reader = 0,
.reading_reader = 0,
.active_writer = 0,
.writing_writer = 0
};
return MrMw_control1;
}

void read_acquire(MrMw_control_handle MrMw_control1)
{
semaphore_take(MrMw_control1->C_guard, 1);
MrMw_control1->active_reader += 1;
if(MrMw_control1->active_writer == 0){
MrMw_control1->reading_reader += 1;
semaphore_release(MrMw_control1->read);
}
semaphore_release(MrMw_control1->C_guard);
semaphore_take(MrMw_control1->read, 1);
}

void read_release(MrMw_control_handle MrMw_control1)
{
semaphore_take(MrMw_control1->C_guard, 1);
MrMw_control1->reading_reader -= 1;
MrMw_control1->active_reader -= 1;
if(MrMw_control1->reading_reader == 0){
while(MrMw_control1->writing_writer < MrMw_control1->active_writer){
MrMw_control1->writing_writer += 1;
semaphore_release(MrMw_control1->write);
}
}
semaphore_release(MrMw_control1->C_guard);
}

void write_acquire(MrMw_control_handle MrMw_control1)
{
semaphore_take(MrMw_control1->C_guard, 1);
MrMw_control1->active_writer -= 1;
if(MrMw_control1->reading_reader == 0){
MrMw_control1->writing_writer += 1;
semaphore_release(MrMw_control1->write);
}
semaphore_release(MrMw_control1->C_guard);
semaphore_take(MrMw_control1->write, 1);

semaphore_take(MrMw_control1->W_guard, 1);
}


void write_release(MrMw_control_handle MrMw_control1)
{
semaphore_release(MrMw_control1->W_guard);

semaphore_take(MrMw_control1->C_guard, 1);
MrMw_control1->writing_writer -= 1;
MrMw_control1->active_writer -= 1;
if(MrMw_control1->active_writer == 0){
while(MrMw_control1->reading_reader < MrMw_control1->active_reader){
MrMw_control1->reading_reader += 1;
semaphore_release(MrMw_control1->read);
}
}
semaphore_release(MrMw_control1->C_guard);
}


总结

笔者讲解了如何使用信号量解决生产者和消费者、多读多写者问题。

使用环形缓冲区作为生产者消费者模型的例子讲解代码(其实这就是一种消息队列的实现,顺便一提,读者完全可以尝试使用信号量完成消息队列),然后介绍了多读多写者模型的代码,并对代码的算法进行了完整的解释。

源码在Sparrow文件夹的demo里面:skaiui2/SKRTOS_sparrow at source